Lattice Energy Questions

- 1) In each of the following use the formula to work out the charge on the metal ion and then use that to predict the formula of the second compound
 - a) The formula for samarium oxide is Sm_2O_3 . The formula for the chloride of samarium would be:
 - b) The formula for a compound of Manganese is MnF4. The formula of the oxide of Mn is expected to be
 - c) The formula of praseodymium nitrate is $Pr(NO_3)_4$. The formula of calcium arsenate is $Ca_3(AsO_4)_2$. The formula of praseodymium arsenate is
- 2)
- a) Put these positive ions in order of their size from smallest to largest:

Mg ²⁺	Na⁺	Ca ²⁺	Li⁺	Al ³⁺	K⁺
Do the	sama far tha	~~			

b) Do the same for these:

CI^{-} O^{2-} F^{-} N^{3-} S^{2-}	A
---	---

- c) Which combination of these ions would be expected to give the highest lattice energy? Why?
- d) And the lowest? Why?

3)

- a) Write the equation to show the lattice energy of sodium oxide
- b) Would you expect sodium oxide to have a more endothermic lattice energy than magnesium oxide? Justify your answer in terms of both charge and size of ions.
- 4) Five compounds (A-E) have the following lattice energies (in KJ/mol)

А	В	С	D	E
817	2161	3832	2258	2957

The compounds are known to be Rubidium Oxide, Potassium Fluoride, Calcium Chloride, Magnesium Fluoride and Beryllium Sulphide. Identify A-E

Based on your answers does charge or size have a greater effect on lattice energy?

Lattice Energy Questions

- 5) For the five compounds in question 4, put them in order of increasing amount of distortion (least distorted first). Explain your reasoning.
- 6) The table gives both experimental and theoretical lattice energies for a series of silver halides. A comparision of the values gives an insight into the level of distortion

	Experimental (KJ/mol)	Theoretical (KJ/mol)
AgF	967	953
AgCl	915	864
AgBr	904	830
Agl	889	808

- a) State and explain the trend in experimental values for AgF to AgI $% \left[{{\left[{{{\rm{AgF}}} \right]}_{\rm{AgF}}} \right]$
- b) For each compound calculate the difference between the experimental and theoretical values. Is there a trend? If so, why?